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1. INTRODUCTION

Let H be a Hilbert space, let C1 , C2 , ..., Cr be nonempty closed convex
subsets of H and let I be the identity operator on H. Then the convex
feasibility problem in a Hilbert space setting may be stated as follows: The
original (unknown) image z is known a priori to belong the intersection C0

of r well-defined sets C1 , C2 , ..., Cr in a Hilbert space H; given only the
metric projections Pi of H onto Ci (i=1, 2, ..., r), recover z by an iterative
scheme.

In 1991, Crombez [4] proved the following: Let T=:0I+�r
i=1 :i Ti

with Ti=I+*i (Pi&I ) for all i, 0<*i<2, :i>0, i=0, 1, 2, ..., r, �r
i=0 :i=1,

where each Pi is the metric projection of H onto Ci and C0=� r
i=1 Ci is

nonempty. Then starting from an arbitrary element x of H, the sequence
[T nx] converges weakly to an element of C0 . But Crombez's result cannot
be applied to this problem in Lp (1<p<�, p{2). Later, Kitahara and
Takahashi [9] dealt with the convex feasibility problem by convex com-
binations of sunny nonexpansive retractions in uniformly convex Banach
spaces. In [9], they proved that an operator given by a convex combina-
tion of sunny nonexpansive retractions in a uniformly convex Banach space
is asymptotically regular and the set of fixed points of the operator is equal
to the intersection of the ranges of sunny nonexpansive retractions.
Further, using the results, they proved some weak convergence theorems
for the operator which are connected with the convex feasibility problem.
See also Reich [12].

In this paper, we also deal with the convex feasibility problem in Banach
spaces setting and improve some results in [9]. We first prove two weak
convergence theorems for an operator given by a convex combination of
nonexpansive retractions in a strictly convex and reflexive Banach space. In
the proofs of the theorems, it is crucial that the operator is asymptotically
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regular and the set of fixed points of the operator is equal to the inter-
section of ranges of nonexpansive retractions. One of the crucial results is
proved using Edelstein and O'Brien [5] or Ishikawa [7] and the other is
obtained using Bruck [1]. An important branch of the convex feasibility
problem is the problem of image recovery. They often and seriously dealt
with the problem of image recovery under the inconsistent constraints. So,
we also pay attention to the situation where the constraints are incon-
sistent, i.e., when the intersection of the sets Ci (i=1, 2, ..., r) is empty.
Finally we consider the problem of finding a common fixed point for a
finite commuting family of nonexpansive mappings in a strictly convex and
reflexive Banach space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and
by R the set of real numbers. Let E be a Banach space and let I be the
identity operator on E. Let C be a nonempty subset of E. Then, a mapping
T of C into itself is said to be nonexpansive on C if &Tx&Ty&�&x&y& for
every x, y # C. Let T be a mapping of C into itself. Then we denote by F(T )
the set of fixed points of T and by R(T) the range of T. A mapping T of
C into itself is said to be asymptotically regular if for every x # C,
T nx&T n+1x converges to 0 as n � �. Let D be a subset of C and let P
be a mapping of C onto D. Then P is said to be sunny if

P(Px+t(x&Px))=Px

whenever Px+t(x&Px) # C for x # C and t�0. A mapping P of C into
itself is said to be a retraction if P=P2. If a mapping P of C into itself is
a retraction, then Pz=z for every z # R(P). A subset D of C is said to be
a (sunny) nonexpansive retract if there exists a (sunny) nonexpansive
retraction of C onto D. Let E be a Banach space and let SE=[x # E :
&x&=1] be the unit sphere of E. Then, for every = with 0�=�2, the
modulus $E (=) of convexity of a Banach space E is defined by

$E (=)=inf {1&
&x+y&

2 } &x&�1, & y&�1, &x&y&�== .

A Banach space E is said to be uniformly convex if

$E (=)>0
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for every =>0. A Banach space E is said to be strictly convex if

"x+y
2 "<1

for x, y # SE with x{y. A uniformly convex Banach space is strictly con-
vex. In a strictly convex space, we also have that if

&x&=& y&=&(1&*) x+*y& for x, y # E ; * # (0, 1),

then x=y. A closed convex subset C of a Banach space E is said to have
normal structure if for each bounded closed convex subset K of C which
contains at least two points, there exists an element x0 of K such that
supy # K &x0&y&<$(K ), where $(K ) is the diameter of K. It is well known
that a closed convex subset of a uniformly convex Banach space has normal
structure and a compact convex subset of a Banach space has normal
structure. The following result was proved by Kirk [8].

Theorem 2.1 (Kirk [8]). Let E be a reflexive Banach space and let C be
a nonempty bounded closed convex subset of E which has normal structure.
Let T be a nonexpansive mapping of C into itself. Then F(T) is nonempty.

Let E be a Banach space and let E* be its dual, that is, the space of all
continuous linear functionals f on E. Then the norm of E is said to be
Gâteaux differentiable if

lim
t � 0

&x+ty&&&x&
t

exists for each x and y in SE . It is said to be Fre� chet differentiable if for
each x in SE , this limit is attained uniformly for y in SE . The following
result is a direct consequence of Bruck [3]; see also [10, 15].

Theorem 2.2 ([9]). Let E be a uniformly convex Banach space with a
Fre� chet differentiable norm, and let C be a nonempty closed convex subset of
E. Let T be an asymptotically regular nonexpansive mapping of C into itself
with F(T ){<. Then, for each x # C, [T nx] converges weakly to an element
of F(T ).

A Banach space E is said to satisfy Opial's condition [11] if xn ( x and
x{y imply

lim inf
n � �

&xn&x&<lim inf
n � �

&xn&y&,

where ( denotes the weak convergence.
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3. WEAK CONVERGENCE THEOREMS

In this section, we prove two weak convergence theorems which are con-
nected with the convex feasibility problem in a Banach space setting. Using
Edelstein and O'Brein [5] or Ishikawa [7], we first prove the following
lemma.

Lemma 3.1. Let E be a Banach space and let C be a nonempty convex
subset of E. Let S be a mapping on C given by S=;0I+�r

i=1 ;iSi ,
0<;i<1, i=0, 1, ..., r. �r

i=0 ;i=1, such that each Si is nonexpansive on C
and �r

i=1 F(Si ) is nonempty. Then, S is asymptotically regular on C.

Proof. Define a mapping T of C into itself by

Tx= :
r

i=1

;i

1&;0

Six for every x # C.

Then T is nonexpansive. Further, since �r
i=1 F(Si ) is nonempty, for any

x # C, [T nx] is bounded. So, from S=;0 I+(1&;0)T and Theorem 1 in
[5], we have that S is asymptotically regular on C. K

The following lemma proved by Bruck [1] is crucial in the proofs of
Theorems 3.3 and 3.4. We give the proof for the sake of using it in the
proof of Theorem 4.1.

Lemma 3.2. Let E be a strictly convex Banach space and let C be a non-
empty closed convex subset of E. Let C1 , C2 , ..., Cr be nonexpansive retracts
of C such that �r

i=1 Ci{,. Let T be a mapping on C given by
T=�r

i=1 :iTi , 0<:i<1, i=1, 2, ..., r, �r
i=1 :i=1, such that for each i,

Ti=(1&*i )I+*iPi , 0<*i<1, where Pi is a nonexpansive retraction of C
onto Ci . Then,

F(T )= ,
r

i=1

Ci .

Proof. Let x # Ci . Then, since Pi is a retraction of C onto Ci , there
exists y # C with Pi y=x. So, we have x=Pi y=P2

i y=Pix and, hence,
Ti x=x. Then x # F(Ti ). It is obvious that F(Ti )/Ci . Therefore,
�r

i=1 Ci=�r
i=1 F(Ti ). So, it is sufficient to show

F(T )= ,
r

i=1

Ci .
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Let x # F(T). Then, for any y # �r
i=1 Ci , we have

&x&y&=&Tx&Ty&

=" :
r

i=1

:iTix& :
r

i=1

:iTi y"
=" :

r

i=1

:i (Tix&Ti y)"
� :

r

i=1

:i &Tix&Ti y&

= :
r

i=1

:i &(1&*i ) x+*iPix&(1&*i ) y&*iPi y&

= :
r

i=1

:i &(1&*i )(x&y)+*i (Pix&Pi y)&

= :
r

i=1

:i &(1&*i )(x&y)+*i (Pix&y)&

� :
r

i=1

:i ((1&*i ) &x&y&+*i &Pix&y&)

� :
r

i=1

:i ((1&*i ) &x&y&+*i &x&y&)

= :
r

i=1

:i &x&y&

=&x&y&.

So, we have, for each i,

&x&y&=&Pi x&y&=&(1&*i )(x&y)+*i (Pix&y)&.

From strict convexity of E, we have Pix&y=x&y for each i. This implies
Pi x=x for each i. Therefore, x # �r

i=1 Ci . K

Now we give the first weak convergence theorem for nonexpansive map-
pings given by convex combinations of retractions. This is a generalization
of [9].

Theorem 3.3. Let E be a uniformly convex Banach space with a Fre� chet
differentiable norm and let C be a nonempty closed convex subset of E. Let
C1 , C2 , ..., Cr be nonexpansive retracts of C such that �r

i=1 Ci{,. Let T be
a mapping on C given by T=�r

i=1 :iTi , 0<:i<1, i=1, ..., r, �r
i=1 :i=1,
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such that for each i, Ti=(1&*i ) I+*iPi , 0<*i<1, where Pi is a non-
expansive retraction of C onto Ci . Then, F(T)=�r

i=1 Ci and, further, for
each x # C, [T nx] converges weakly to an element of �r

i=1 Ci .

Proof. Since E is uniformly convex, E is strictly convex. So, we
have F(T )=�r

i=1 F(Ti )=�r
i=1 Ci by Lemma 3.2. As in the proof of

Theorem 6 in [9], T is asymptotically regular on C. So, it follows from
Theorem 2.2 that for each x # C, [T nx] converges weakly to an element of
F(T )=�r

i=1 Ci . K

Further we have following.

Theorem 3.4. Let E be a reflexive and strictly convex Banach space
satisfying Opial 's condition and let C be a nonempty closed convex subset of
E. Let C1 , C2 , ..., Cr be nonexpansive retracts of C such that �r

i=1 Ci{,.
Let T be a mapping on C given by T=�r

i=1 :iTi , 0<:i<1, i=1, ..., r,
�r

i=1 :i=1, such that for each i, Ti=(1&*i ) I+*iPi , 0<*i<1, where Pi

is a nonexpansive retraction of C onto Ci . Then, F(T)=�r
i=1 Ci and,

further, for each x # C, [T nx] converges weakly to an element of �r
i=1 Ci .

Proof. As in the proof of Theorem 3.3, it follows that F(T)=�r
i=1 Ci

and T is asymptotically regular on C. So, we show that for any x # C,
[T nx] converges weakly to an element of � r

i=1 Ci . Let x # C. Since F(T )
is nonempty, [T nx] is bounded. Then, since E is reflexive, there exists a
subsequence [T ni x] of [T nx] converging weakly to an element z of C. To
complete the proof of Theorem 3.4, it is sufficient to prove that z # �r

i=1 Ci

and if another subsequence [T nj x] of [T nx] converging weakly to an
element z$, then z=z$. First, we prove z # F(T )=�r

i=1 Ci . We assume
z{Tz. Since T is asymptotically regular on C, we also have that [T ni+1x]
converges weakly to z. Further, since E satisfies Opial's condition, then we
have

lim inf
i

&T ni x&z&�lim inf
i

(&T ni x&T ni+1x&+&T ni+1x&z&)

=lim inf
i

&T ni+1x&z&

<lim inf
i

&T ni+1x&Tz&

�lim inf
i

&T ni x&z&.

It is a contradiction. So, we have z # F(T ). Similarly, we have z$ # F(T ).
Since T is nonexpansive, limits of &T nx&z& and &T nx&z$& exist. Now we
show z=z$. We assume z{z$. Then we have
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lim inf
i

&T ni x&z&<lim inf
i

&T ni x&z$&

=lim
n

&T nx&z$&

=lim inf
j

&T nj x&z$&

<lim inf
j

&T nj x&z&

=lim
n

&T nx&z&

=lim inf
i

&T ni x&z&.

This is a contradiction. So, we have z=z$. This completes the proof. K

4. ADDITIONAL RESULTS

In this section, we first consider the convex feasibility problem under the
situation where the constraints are inconsistent. Then, we consider the
problem of finding a common fixed point for a finite commuting family of
nonexpansive mappings. Let + be a mean on N, i.e., a continuous linear
functional on l� satisfying &+&=1=+(1). We know that + is a mean on
N if and only if

inf[an : n # N]�+(a)�sup[an : n # N]

for every a=(a1 , a2 , ...) # l� . Occasionally, we use +n(an) instead of +(a).
So, a Banach limit + is a mean + on N satisfying +n(an)=+n(an+1).

Lemma 4.1. Let E be a reflexive Banach space and let C be a nonempty
closed convex subset of E which has the normal structure. Let C1 , C2 , ..., Cr

be nonempty bounded nonexpansive retracts of C. Let T be a mapping on C
given by T=�r

i=1 :iTi , 0<:i<1, i=1, ..., r, �r
i=1 :i=1, such that for each

i, Ti=(1&*i ) I+*i Pi , 0<*i<1, where Pi is a nonexpansive retraction of
C onto Ci . Then F(T ) is nonempty. Further, assume that E is strictly convex
and �r

i=1 Ci=,. Then F(T ) & Ci=, for some i.

Proof. Let x # C and consider a closed ball BR[x] of center x and radius
R containing all the sets C1 , C2 , ..., Cr . Then we have [T nx]/BR[x] & C.
This implies that [T nx] is bounded. So, we define a real valued function g
on C by

g( y )=+n &T nx&y& for every y # C,
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where + is a Banach limit on l� and set

M=[z # C : +n &T nx&z&= inf
y # C

+n &T nx&y&].

Then M is nonempty, bounded, closed, and convex. Further, M is
invariant under T ; for more details see [9, 12]. So, since T is nonexpan-
sive, by Theorem 1, we have a fixed point of T in M. Assume �r

i=1 Ci=,
and let x, y # F(T). Then we have

x= :
r

i=1

:i [(1&*i )x+*i Pix]

and

y= :
r

i=1

:i [(1&*i ) y+*iPi y].

So, we obtain, as in the proof of Lemma 3.2,

&x&y&� :
r

i=1

:i &(1&*i )(x&y)+*i (Pix&Pi y)&

� :
r

i=1

:i [(1&*i ) &x&y&+*i &Pix&Pi y&]

�&x&y& (1)

and, hence,

&x&y&=&Pi x&Pi y&=&(1&*i )(x&y)+*i (Pix&Pi y)&

for each i. Since E is strictly convex, we have

x&y=Pi x&Pi y (V)

for each i. Assume F(T ) & Ci{,. Then we have F(T )/Ci . In fact, if
x # F(T ) and y # F(T ) & Ci , by (V) we have

x&Pix=y&Pi y=y&y=0

and, hence, x # Ci . Therefore F(T )/Ci . If F(T ) & Ci{, for every i, we have
F(T )/�r

i=1 Ci . This contradicts �r
i=1 Ci=,. Therefore F(T ) & Ci=, for

some i. K

Let C and D be nonempty convex subsets of a Banach space E. Then we
denote by iCD the set of z # D such that for any x # C, there exists * # (0, 1)
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with *x+(1&*) z # D and by �C D the set of z # D such that there exists
x # C with *x+(1&*) z � D for all * # (0, 1).

Theorem 4.2. Let E be a strictly convex and reflexive Banach space and
let C be a nonempty closed convex subset of E which has normal structure.
Let C1 , C2 , ..., Cr be nonempty bounded sunny nonexpansive retracts of C
such that for each i, an element of �C Ci is an extreme point of Ci . Let T be
a mapping on C given by T=�r

i=1 :iTi , 0<:i<1, i=1, ..., r, �r
i=1 :i=1,

such that for each i, Ti=(1&*i ) I+*i Pi , 0<*i<1, where Pi is a sunny
nonexpansive retraction of C onto Ci . If �r

i=1 Ci is empty, then F(T ) con-
sists of one point. In addition, if E is uniformly convex or satisfies Opial 's
condition, for each x # C, [T nx] converges weakly to an element of F(T ).

Proof. By strict convexity of E and Lemma 4.1, F(T ) is a nonempty
closed convex subset of C and F(T ) & Cj=, for some j. Let u, v # F(T ).
Then as in the proof of Lemma 4.1, we have u&Pj u=v&Pj v. So, for any
x, y # F(T ) and * # (0, 1), we have *x+(1&*) y # F(T ) and

&Pj (*x+(1&*) y)&(*Pjx+(1&*) Pj y)&

=&Pj (*x+(1&*) y)&[*x+(1&*) y]+*x+(1&*) y

&(*Pjx+(1&*) Pj y)&

=&Pjx&x+*(x&Pjx)+(1&*)( y&Pj y)&

=0.

This implies that Pj is an one-to-one affine mapping of F(T ) onto Cj .
Further, for any x # F(T ), Pj x # �C Cj . In fact, if Pj x # iCCj , there exists
* # (0, 1) with *x+(1&*) Pjx # Cj . Since Pj is sunny, we have

*x+(1&*) Pj x=Pj (*x+(1&*) Pjx)=Pjx

and, hence, x=Pj x. This is a contradiction. Let x, y # F(T ) with x{y.
Then Pj x{Pj y and for any * # (0, 1),

Pj (*x+(1&*) y)=*Pj x+(1&*) Pj y.

This contradicts that Pj (*x+(1&*) y) is an extreme point of Cj . There-
fore F(T ) consists of one point. We assume that E is uniformly convex or
Opial's condition. Let x # C. Then since I&T is demiclosed and T is
asymptotically regular. [T ni x] ( z implies z # F(T ). By the uniqueness of
F(T ), any weakly convergent subsequence [T ni x] of [T nx] has the same
weakly limit point. Then we have that, for each x # C, [T nx] converges
weakly to an element of F(T). K
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The following theorem related to the existence of a nonexpansive retract
is proved in Bruck [1, 2]. See [9] for the existence of a sunny nonexpan-
sive retract.

Theorem 4.3. Let E be a reflexive Banach space. Let C be a nonempty
closed convex subset of E and let T be a nonexpansive mapping of C into
itself with F(T ){,. If T has a fixed point in every nonempty bounded closed
convex set that T leaves invariant, then F(T ) is a nonexpansive retract of C.

Using Theorem 4.3, we prove the following.

Theorem 4.4. Let E be a uniformly convex Banach space with a Fre� chet
differentiable norm and let C be a nonempty closed convex subset of E. Let
[S1 , S2 , ..., Sr] be a commuting family of nonexpansive mappings on C with
F(Si ){,, i=1, 2, ..., r. Let T be a mapping on C given by T=�r

i=1 :iTi ,
0<:i<1, i=1, ..., r, �r

i=1 :i=1, such that for each i, Ti=(1&*i ) I+*iPi ,
0<*i<1, where Pi is a nonexpansive retraction of C onto F(Si ). Then,
F(T )=�r

i=1 F(Si ). Further, for each x # C, [T nx] converges weakly to an
element of �r

i=1 F(Si ).

Proof. Since E is uniformly convex, it follows from Theorem 2.1 that
for each i, Si has a fixed point in every nonempty bounded closed convex
set that Si leaves invariant. So, by Theorem 4.3, F(Si ) is a nonexpansive
retract of C for each i. However, as in the proof of Theorem 2 in [6], we
show the existence of a nonexpansive retraction of C onto F(Si ) without
using Theorem 4.3. Let x # C and let + be a Banach limit on l� . Then, for
each Si , define a function g of E* into R by

g(x*)=+n (S n
i x, x*) for every x* # E*.

Then g is linear and continuous. So, we have a unique element x0 # E such
that

+n (S n
i x, x*)=(x0 , x*) for every x* # E*.

Thus, putting x0=Pix for every x # C, by [6] Pi is a nonexpansive retrac-
tion of C onto F(Si ). Since E is strictly convex, F(Si ) is nonempty, closed,
and convex. By mathematical induction, we show that �r

i=1 F(Si ) is non-
empty. Let z # F(Si ). Then, from Si Sj z=SjSiz=Sjz, we have Sjz # F(Si ).
So, F(Si ) is invariant under Sj . Let u # F(Sj ). Then since E is reflexive and
strictly convex, there exists a unique element z # F(Si ) such that &u&z&=
min[&u&v& : v # F(Si )]. For such a z # F(Si ), we have &Sjz&u&�&z&u&
and Sjz # F(Si ). So, we have z=Sjz. This implies that F(Si ) & F(Sj){,.
See, for more details, [9]. Therefore, by Lemma 3.2 and Theorem 3.3, we
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have that F(T )=�r
i=1 F(Si ) and for each x # C, [T nx] converges weakly

to an element of �r
i=1 F(Si ). K

Theorem 4.5. Let E be a reflexive and strictly convex Banach space
which satisfies Opial 's condition and let C be a nonempty closed convex
subset of E. Let [S1 , S2 , ..., Sr] be a commuting family of nonexpansive
mappings on C such that F(Si ){, for i=1, 2, ..., r. Let T be a mapping on
C given by T=�r

i=1 :iTi , 0<:i<1, i=1, ..., r, �r
i=1 :i=1, such that for

each i, Ti=(1&*i ) I+*iPi , 0<*i<1, where Pi is a nonexpansive retrac-
tion of C onto F(Si ). Then, F(T )=�r

i=1 F(Si ) and, further, for each x # C,
[T nx] converges weakly to an element of �r

i=1 F(Si ).

Proof. Fix i with 1�i�r and let D be a nonempty bounded closed
convex subset of C with Si D/D. Then for any u # F(Si ), there exists a
unique element z # D such that &u&z&=min[&u&v& : v # D]. Since D is
invariant under Si , we have Siz # D. Further, since &Si z&u&�&z&u&, we
have Si z=z. This implies Si has a fixed point in D. Then, by Theorem 4.3,
F(Si ) is a nonexpansive retract of C for each i. So, there exists a non-
expansive retraction Pi of C onto F(Si ). As in the proof of Theorem 4.4,
we have that �r

i=1 F(Si ) is nonempty. By Lemma 3.2, we also have F(T )=
�r

i=1 F(Si ). Further, by Theorem 3.4, for each x # C, [T nx] converges
weakly to an element of �r

i=1 F(Si ). K
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